Schlagwort: curriculum

  • The Computing Curriculum: Three global perspectives

    The Computing Curriculum: Three global perspectives

    Reading Time: 5 minutes

    Across continents and cultural contexts, our free Computing Curriculum serves as a common thread that connects educators. Read the stories of 3 educators who share their thoughts on the curriculum’s application, adaptability, and the impact it’s had on their educational settings. 

    I’m Freda, and I co-founded a non-profit organisation called Waloyo in South Africa.

    Photo of Freda, co-founder of the non-profit organisation called Waloyo.

    Coming from a background of technology consulting, I know the value of computing education. I have a real drive to teach young kids coding so they can get ahead and find jobs in our digital economy.

    Our role at Waloyo is to work with non-profit organisations that work with young people and want to expand their services to include computing skills training. Waloyo trains non-profit facilitators, who in turn teach computing skills to youth between the ages of 6 and 18. A unique challenge is that the majority of facilitators we train don’t have any previous computing experience. The resources we use need to be clear and easy to follow.

    What I really love about The Computing Curriculum resources is the facilitator guides.

    Our initial plan was to run the training programmes after school and outside the school curriculum, but we were getting requests from schools to support them too. South Africa doesn’t have a national computing curriculum, so there aren’t many subject specialist teachers. So we looked for curriculum resources from other countries to support our work and that’s how we found The Computing Curriculum. 

    In rural Africa where we work, students have low levels of exposure to computers and computing. So whether they are 6 or 18 years old, we usually start with Scratch. The younger kids then continue with Scratch and the older kids move quickly on to Python as they build confidence.

    Screenshot of Scratch 3 interface

    What I really love about The Computing Curriculum resources is the facilitator guides. They fit in well with our process of training NGO facilitators to work directly with the kids. I love the comprehensiveness and flexibility of what your curriculum provides to enable this method of delivery.

    So far we’ve launched 3 programmes in communities in South Africa, impacting around 150 young people, and it’s worked beautifully. It’s phenomenal to see how excited the kids get when the computer does what they want it to do!

    I’m Al, and I’ve been a secondary science teacher since 1991.

    Photo of Al out hiking in rocky terrain.

    For the past 13 years, I’ve taught in international schools. Two years ago, I decided to retrain in teaching computing. My wife and I are currently teaching in Kazakhstan. I now teach at primary level but still handle some secondary classes. For primary, there’s significant time pressure, especially with extra lessons for the local language, making it challenging to fit computing into the schedule.

    The private schools where I work are starting to implement the UK computer science curriculum. At one of the schools, they have a robotics course which has given rise to a misconception that everything in computing is about robotics! My role, therefore, involves expanding the concept of robotics to include a broader range of computing activities and finding efficient ways to integrate these new materials into the curriculum with minimal effort from the staff. I focus on selecting appropriate units to fit into what the schools are already doing rather than implementing a comprehensive new program.

    The Raspberry Pi Foundation’s curriculum resources are valuable because they provide comprehensive lists of programs and ideas that I can adapt for my colleagues. I adapt resources to make them more accessible for primary teachers, simplifying and customising them for ease of use.

    The Raspberry Pi Foundation’s curriculum resources are valuable because they provide comprehensive lists of programs and ideas that I can adapt for my colleagues.

    Once students understand that computing is a tool for developing skills rather than just passive consumption, they take ownership of their learning which boosts their confidence. Culturally relevant materials are particularly effective, especially in diverse international classrooms. Adapting resources to be culturally relevant and incorporating students’ examples enhances their usefulness and impact. The resources are excellent, but by tailoring them, they can be even more effective, particularly in an international context with diverse nationalities and learning concepts.

    Head of ICT at an international school in Egypt

    In a computing classroom, a boy looks down at a keyboard.

    As Head of Department, I am responsible for what all the different age groups learn, from year 1 to year 12. We use the Cambridge International (CIE) curriculum, so I was looking for supplementary resources that build from the basics, have a clear progression map, and complement the resources we already had.

    With The Computing Curriculum, it is easy to pick out individual lesson resources to use. I love that it doesn’t need a licence and that the students don’t face any problems when they download it to practise at home. I’m covering curriculums for both computing and digital literacy, so I use resources that are relevant to my curriculum maps.

    With The Computing Curriculum, it is easy to pick out individual lesson resources to use.

    In some schools, their idea of an ICT lesson is getting students to play games, use Word documents, make PowerPoint presentations, and that’s it. But this generation of students love coding and making their own games. So instead of playing the game, we teach them how to develop a game and how to add the characters themselves.

    From year 1 to year 2, students take part in a wide range of computing activities and develop a lot of new skills. They find these skills amazing. It makes them feel engaged, excited, and that they are doing something valuable.

    Using The Computing Curriculum 

    These educators’ stories show how easy it is to adapt our Computing Curriculum to your unique context, enhancing students’ technical skills and inspiring creativity, critical thinking, and a passion for problem-solving. We look forward to continuing this journey with these and other educators as they transform computing education for their learners.

    If you’re looking for new computing resources to teach with, why not give The Computing Curriculum a try? You can also read our culturally relevant pedagogy research that Al mentions in his interview.

    Website: LINK

  • Computing curriculum fundamentals | Hello World #20

    Computing curriculum fundamentals | Hello World #20

    Reading Time: 5 minutes

    Why are computing systems at the heart of our computing curriculum design? Senior Learning Manager Sway Grantham from the Foundation team explains in her article from the brand-new issue of Hello World, our free magazine for computing educators, out today.

    Cover of Hello World issue 20.

    Whether you plan lessons on a Computing topic, develop curriculum content, or even write curriculum policy, you have to make choices. What are you going to include and what is less of a priority? You have to consider time constraints and access to resources, prior learning and maybe even pupil interests. You probably also have to consider the wider curriculum context. Well, here is my first principle to help you: computing systems should be the foundation of your Computing curriculum.

    A computing systems epiphany

    As a primary teacher, when I first began writing Computing lesson plans for children aged 9 to 10, I started with programming. This was a very visual entry into Computing, and children were excited to create projects that were familiar to them, such as games and animations. However, as my understanding of Computing grew, I realised that something was missing.

    Two learners do physical computing in the primary school classroom.

    My learners could explain what an algorithm is, as well as explaining that a program is ‘a set of instructions that runs on a computer to tell it what to do’. Both of these met the curriculum needs, but I wasn’t convinced that they could link these two concepts together. Could they connect what they were doing on a floor robot to the computing systems around them? Did they understand what a computer was? Well… I asked them to see what they’d say!

    According to my class, a computer was:

    • A piece of technology
    • A keyboard and a screen
    • A search engine
    • A machine used for work
    • A metal brain
    • A machine with a keyboard
    • An information device
    • Electric

    This very simple question highlighted a wealth of alternate conceptions about programming and computing systems. The other commonality of my learners’ definitions was that they described the computer’s function, as if, in order to define what a computer is, we just need to know what it does. This view of a definition greatly limits learners’ ability to understand what potential computers have beyond personal use.

    My learners had two discrete chunks of knowledge: how to program a floor robot, and that laptops were computers. However, without a bridge to connect them, this learning was disjointed. Learners needed to have a concrete, conceptual understanding of ‘what a computer is’ before they could start to comprehend the more abstract role of a program in that system.

    Knowledge of computing systems empowers people to take control of technology and not just consume it.

    Beyond the experiences of my young learners, we see examples of a lack of understanding about computing systems all the time in society. Many competent users of software are able to regularly complete the tasks that they need, but if one day something doesn’t work, they do not know how to find a solution. Equally, many people enjoy exploring digital making projects, yet if they want to personalise the project, they don’t know what they can or can’t change to do this. Knowledge of computing systems empowers people to take control of technology and not just consume it.

    Planning computing content today

    Both of these examples highlight the importance of introducing computing systems as both life skills and as support for developing other areas of computing. More recently, the Raspberry Pi Foundation has been creating 100 hours of curriculum content in partnership with non-profit organisation Amala Education. Through this content we aim to give refugee learners who may never have used technology enough understanding to build a website that encourages social change.

    Whilst we know that the material needs to include some foundational knowledge of computing systems, we must first consider the core content that learners must understand to achieve the end goal, such as:

    • Webpage creation 
    • HTML/CSS/JavaScript
    • Project management 
    • Project development

    These areas of learning are a great place to start as, undeniably, learners aren’t going to be able to build a website without knowing the process of creating a website, the languages used to create web pages, or the project management skills to see a project from start to finish.

    This could be the entirety of the content, but instead, I encourage you to think back to those children who could program but didn’t know on what devices programs could run. We need to connect the core content to that foundational content: how is building a website related to computing systems?

    Prior knowledge

    All learning is built on prior knowledge, even if that prior knowledge has been gained through life experience and not formal education. To build a website, we need to know how to type and use a mouse. We need to know what a website is, why people use websites, and what sort of media is found on them. Beyond that, we need to know how the files that we are creating are being shared with other people. We need to understand that a computer can communicate with another computer and what the process is to make that happen. None of this learning is the core content of building a website, but if you tried to build a website without understanding these things, it would be difficult to do.

    All learning is built on prior knowledge, even if that prior knowledge has been gained through life experience and not formal education.

    As the learners we support together with Amala Education might have no prior experience of using technology, we needed to ensure that enough foundational computing systems content was built into the learning sequence — things such as:

    • Recognising digital devices
    • Decomposing computing systems
    • Digital painting (mouse skills)
    • Combining text and images (desktop publishing)
    • Networks and the internet
    • Internet searching

    By incorporating this content into the learning sequence, we ensure that learners do not just learn a process for creating a website. They understand the impact of the choices they make when building a website, they have the skills to implement their ideas, and they can connect their understanding to solve any unexpected challenges they find along the way. This more holistic approach should support learners’ knowledge transfer and offer them a much broader range of opportunities. 

    This more holistic approach should support learners’ knowledge transfer and offer them a much broader range of opportunities.

    Whatever your curriculum requires, you will have the core content you need to teach. This could be the requirements of your standardised curriculum, it could be the specific project you’re trying to build, or it could be the aspirations that you have for your students. However, rather than stopping at that part of your learning sequence, take a step back and consider the prior knowledge you’re connecting to. I expect you will find that computing systems is what you need to ensure learners’ new knowledge has a solid foundation.

    Read the new Hello World issue today

    Computing systems and networks is one of those computer science topics in which misconceptions abound. Hello World issue 20 focuses on how you can support your learners to grasp even the tricky ideas within this topic, giving you practical ideas, activities, and insights from practicing educators. Download your free PDF copy now, and subscribe to never miss an issue.

    Website: LINK

  • Our approach to developing progression for teaching computing

    Our approach to developing progression for teaching computing

    Reading Time: 4 minutes

    Part of our work in the consortium behind the National Centre for Computing Education (NCCE) is to produce free classroom resources for teachers to deliver the Computing curriculum to students aged 5–16 in England. Our Director of Educator Support Carrie Anne Philbin describes how we define and represent progression in these resources.

    For our work to develop a complete bank of free teaching resources that help teachers deliver the Computing curriculum in England, we knew that a strong progression framework is absolutely crucial. A progression framework is the backbone of any subject curriculum: it defines the sequence in which students learn, noting where core understanding of a topic is established in order to progress.

    What’s the best approach to present progression?

    We studied a lot of progression frameworks, examination specifications, and even some research papers. What we found is that there are two quite different ways of presenting progression that show what should be taught and when it should be taught, as well as information on how or why concepts should be taught.

    Listing is one option

    Firstly, there is the approach of creating a categorisation of skills and concepts into a list or table. Sequencing is shown by having objectives listed by Key Stage, year group, or even by learners’ age. Examples of this approach include the CAS computing progression pathways and the Massachusetts Digital Literacy and Computer Science Curriculum Framework. They are essentially lists of required knowledge that’s bundled by theme.

    Mapping trajectories is another approach

    Another approach is to use a map of possible trajectories through learning waypoints and importantly how they connect to each other. This approach highlights where prerequisite knowledge needs to be mastered before students can move on, as well as the dependent knowledge contained in other nodes that need to be mastered in order to progress.

    Cambridge Mathematics are leading the way in “developing a flexible and interconnected digital Framework to help reimagine mathematics education 3-19”. We’ve been lucky enough to learn from their work, which has helped us to create learning graphs.

    We develop learning graphs

    For our free classroom resources, we organise computing content (concepts, knowledge, skills, and objectives) into interconnected networks we call learning graphs. We found that nodes often form clusters corresponding to specific themes, and we can connect them if they represent two adjacent waypoints in the learning process. Depending on the level of abstraction, the nodes in a learning graph contain anything ranging from the contents of a curriculum strand across an entire Key Stage, to the learning objectives of a six-lesson unit.

    The learning graph for the Year 9 unit Representations: going audiovisual

    The learning graph for the Year 9 unit ‘Representations: going audiovisual’. Click to embiggen.

    Initially, the graphs we produce are in a fluid state: they uncover the structure of the content and the possible journeys through it, without being bound to a specific teaching pathway. As we develop the content further, the graphs eventually reach a solid state, where the nodes are arranged to reflect our suggestions on the order in which teachers could actually deliver the content.

    Learning graphs are doubly useful

    We believe that learning graphs are useful to teachers on a whole new level: they directly inform lesson planning, but they also add value by showing opportunities to assess understanding at landmark waypoints in a lesson or unit. By checking that students are grasping the concepts, teachers are able to think more about how they are teaching and can revisit knowledge that perhaps didn’t land with learners the first time.
    Woman teacher and female students at a computer

    We need teachers’ feedback

    All progression frameworks are subjective, and because so far there’s only little research into computing education, we rely on teachers’ experience of combining the ‘what’ we teach and ‘how’ to teach it in order to help inform this work. If you’ve not taken a look at our learning graphs for the NCCE Resource Repository, access them via teachcomputing.org/resources and let us know your thoughts via [email protected].

    A version of this article will be part of the upcoming issue of Hello World, our free magazine for computing educators, launching on 23 March. Follow Hello World on Twitter for updates!

    Website: LINK