Schlagwort: students

  • Ada Computer Science: A year in review

    Ada Computer Science: A year in review

    Reading Time: 5 minutes

    With the new academic year fully under way in many parts of the world, it’s the perfect time to reflect on the growth and innovations we’ve achieved with the Ada Computer Science platform. Your feedback has helped us make improvements to better support teachers and students — here’s a look back at some of the key developments for Ada from the past 12 months.

    Teachers in discussion at a table.
    Teachers in discussion at a Raspberry Pi Foundation teacher training event.

    Supporting students through personalised learning, new resources, and new questions

    We made significant improvements throughout the year to support students with exam preparation and personalised learning. We introduced over 145 new self-marking questions and updated 50 existing ones, bringing the total to more than 1000. A new type of question was also launched to help students practise writing longer responses: they label parts of a sample answer and apply a mark scheme, simulating a peer review process. You can read more about this work in the AI section below.

    We updated the question finder tool with an intuitive new design. Instead of seeing ten questions at random, students can now see all the questions we have on any given topic, and can use the filters to refine their searches by qualification and difficulty level. This enables students to better personalise their revision and progress tracking

    “Ada Computer Science has been very effective for my revision. I like how it provides hints and pointers if you answer a question incorrectly.” 

    – Ada Computer Science student

    The ‘Representation of sound’ topic received a major update, with clearer explanations, new diagrams, and improved feedback to support students as they tackle common misconceptions in sound physics. We also refreshed the ‘Representation of numbers’ topic, adding new content and interactive quizzes to support teachers in assessing students’ understanding more effectively. 

    We introduced a new database scenario titled ‘Repair & Reform’, offering an entity relationship diagram, a data dictionary, and a new SQL editor and question set to help students prepare for project-based assessments. We’ve further expanded this scenario into a full project covering all stages of development, including requirements analysis and evaluation. 

    April was dedicated to gearing up for the exam season, with the introduction of revision flashcards and ready-made quizzes on key topics like bitmapped graphics and sorting algorithms. We also launched a student revision challenge, which ran from April to June and attracted over 600 participants.

    “Ada Computer Science is an excellent resource to help support teachers and students. The explanations are clear and relevant, and the questions help students test their knowledge and understanding in a structured way, providing links to help them reconcile any discrepancies or misunderstandings.” 

    – Patrick Kennedy, Computer Science teacher

    Supporting teachers  

    We expanded our efforts to support new computer science teachers with the launch of a teacher mentoring programme that offers free online drop-in sessions. We also hosted a teacher training event at the Raspberry Pi Foundation office in Cambridge (as seen in the picture below), where educators saw previews of upcoming content on AI and machine learning and contributed their own questions to the platform.

    Group photo featuring computer science teachers and colleagues from the Raspberry PI Foundation.

    AI content and AI features

    We continued our focus on AI and machine learning, releasing new learning resources that explore the ethical and social implications of AI alongside the practical applications of AI and machine learning models. 

    To expand the Ada platform’s features, we also made considerable progress in integrating a large language model (LLM) to mark free-text responses. Our research showed that, as of June, LLM marks matched real teachers’ marks 82% of the time. In July, we received ethics approval from the University of Cambridge to add LLM-marked questions to the Ada platform. 

    Computer science education in Scotland

    We made significant strides towards supporting Scottish teachers and students with resources tailored to the SQA Computing Science curriculum. From September to November last year, we piloted a new set of materials specifically designed for Scottish teachers, receiving valuable feedback that we’ve used in 2024 to develop new content. More than half of the theory content for the National 5 and Higher specifications is now available on the platform. 

    Teacher, in the middle of a computing lesson.

    Our ‘Reform & Repair’ database scenario and project align with both SQA Higher and A level standards, providing a comprehensive resource for students preparing for project-based assessments.

    Looking ahead: New resources for September and beyond

    We have big plans for Ada for the next 12 months. Our focus will remain on continuously improving our resources and supporting the needs of both educators and students. 

    After the positive response to our ‘Repair & Reform’ database project, our content experts are planning additional practical projects to support students and teachers. The next one will be a web project that covers HTML, CSS, JavaScript, and PHP, supporting students taking SQA qualifications in Scotland or undertaking the non-examined assessment (NEA) at A level.

    We’ll be working on a number of teacher-focused improvements to the platform, which you’ll also see on Ada’s sibling site, Isaac Physics. These will include an overhaul of the markbook to make it more user-friendly, and updates to the ‘Assignments’ tool so assignments better meet the needs of teachers in schools.

    We’ll be welcoming the next cohort of computer science students to the STEM SMART programme in January 2025 where, in partnership with the University of Cambridge, we’ll offer free, complementary teaching and support to UK students at state schools. Applications are now open.

    Thank you to every teacher and student who has given their time in the last year to share feedback about Ada Computer Science — your insights are invaluable as we work to make high-quality computer science materials easily accessible. Here’s to another fantastic year of learning and growth!

    Website: LINK

  • Dance magic, dance

    Dance magic, dance

    Reading Time: 2 minutes

     Firstly, I’d like to apologise for rickrolling you all yesterday. I would LIKE to, but I can’t — it was just too funny to witness.

    But as I’m now somewhat more alive and mobile, here’s a proper blog post about proper things. And today’s proper thing is these awesome Raspberry Pi–powered dance costumes from students at a German secondary school:

    In the final two years at German gymnasiums (the highest one of our secondary school types), every student has to do a (graded) practical group project. Our school is known for its superb dancing groups, which are formed of one third of the students (voluntarily!), so our computer science teacher suggested to make animated costumes for our big dancing project at the end of the school year. Around 15 students chose this project, firstly because the title sounded cool and secondly because of the nice teacher 😉.

    Let me just say how lovely it is that students decided to take part in a task because of how nice the teacher is. If you’re a nice teacher, congratulations!

    The students initially tried using Arduinos and LED strips for their costumes. After some failed attempts, they instead opted for a Raspberry Pi Zero WH and side-emitting fibre connected to single RGB LEDs — and the result is rather marvellous.

    To power the LEDs, we then had to shift the voltage up from the 3.3V logic level to 12V. For this, we constructed a board to hold all the needed components. At its heart, there are three ULN2803A to provide enough transistors at the smallest possible space still allowing hand-soldering.

    Using pulse-width modulation (PWM), the students were able to control the colour of their lights freely. The rest of the code was written during after-school meetups; an excerpt can be found here, along with a complete write-up of the project.

    I’m now going to hand this blog post over to our copy editor, Janina, who is going to write up a translated version of the above in German. Janina, over to you…

    [Ed. note: Nein, danke.]

    Website: LINK

  • 3D-printed speakers from the Technical University of Denmark

    3D-printed speakers from the Technical University of Denmark

    Reading Time: 3 minutes

    Students taking Design of Mechatronics at the Technical University of Denmark have created some seriously elegant and striking Raspberry Pi speakers. Their builds are part of a project asking them to “explore, design and build a 3D printed speaker, around readily available electronics and components”.

    The students have been uploading their designs, incorporating Raspberry Pis and HiFiBerry HATs, to Thingiverse throughout April. The task is a collaboration with luxury brand Bang & Olufsen’s Create initiative, and the results wouldn’t look out of place in a high-end showroom; I’d happily take any of these home.

    Søren Qvist’s wall-mounted kitchen sphere uses 3D-printed and laser-cut parts, along with the HiFiBerry HAT and B&O speakers to create a sleek-looking design.

    Otto Ømann’s group have designed the Hex One – a work-in-progress wireless 360° speaker. A particular objective for their project is to create a speaker using as many 3D-printed parts as possible.

    “The design is supposed to resemble that of a B&O speaker, and from a handful of categories we chose to create a portable and wearable speaker,” explain Gustav Larsen and his team.

    Oliver Repholtz Behrens and team have housed a Raspberry Pi and HiFiBerry HAT inside this this stylish airplay speaker. You can follow their design progress on their team blog.

    Tue Thomsen’s six-person team Mechatastic have produced the B&O TILE. “The speaker consists of four 3D-printed cabinet and top parts, where the top should be covered by fabric,” they explain. “The speaker insides consists of laser-cut wood to hold the tweeter and driver and encase the Raspberry Pi.”

    The team aimed to design a speaker that would be at home in a kitchen. With a removable upper casing allowing for a choice of colour, the TILE can be customised to fit particular tastes and colour schemes.

    Build your own speakers with Raspberry Pis

    Raspberry Pi’s onboard audio jack, along with third-party HATs such as the HiFiBerry and Pimoroni Speaker pHAT, make speaker design and fabrication with the Pi an interesting alternative to pre-made tech. These builds don’t tend to be technically complex, and they provide some lovely examples of tech-based projects that reflect makers’ own particular aesthetic style.

    If you have access to a 3D printer or a laser cutter, perhaps at a nearby maker space, then those can be excellent resources, but fancy kit isn’t a requirement. Basic joinery and crafting with card or paper are just a couple of ways you can build things that are all your own, using familiar tools and materials. We think more people would enjoy getting hands-on with this sort of thing if they gave it a whirl, and we publish a free magazine to help.

    Raspberry Pi Zero AirPlay Speaker

    Looking for a new project to build around the Raspberry Pi Zero, I came across the pHAT DAC from Pimoroni. This little add-on board adds audio playback capabilities to the Pi Zero. Because the pHAT uses the GPIO pins, the USB OTG port remains available for a wifi dongle.

    This video by Frederick Vandenbosch is a great example of building AirPlay speakers using a Pi and HAT, and a quick search will find you lots more relevant tutorials and ideas.

    Have you built your own? Share your speaker-based Pi builds with us in the comments.

    Website: LINK