Schlagwort: inclusion

  • Engaging Black students in computing at UK schools — interview with Joe Arday

    Engaging Black students in computing at UK schools — interview with Joe Arday

    Reading Time: 7 minutes
    Joe Arday.

    On the occasion of Black History Month UK, we speak to Joe Arday, Computer Science teacher at Woodbridge High School in Essex, UK, about his experiences in computing education, his thoughts about underrepresentation of Black students in the subject, and his ideas about what needs to be done to engage more Black students.

    To start us off, can you share some of your thoughts about Black History Month as an occasion?

    For me personally it’s an opportunity to celebrate our culture, but my view is it shouldn’t be a month — it should be celebrated every day. I am of Ghanaian descent, so Black History Month is an opportunity to share my culture in my school and my community. Black History Month is also an opportunity to educate yourself about what happened to the generations before you. For example, my parents lived through the Brixton riots. I was born in 1984, and I got to secondary school before I heard about the Brixton riots from a teacher. But my mother made sure that, during Black History Month, we went to a lot of extracurricular activities to learn about our culture.

    For me it’s about embracing the culture I come from, being proud to be Black, and sharing that culture with the next generation, including my two kids, who are of mixed heritage. They need to know where they come from, and know their two cultures.

    Tell us a bit about your own history: how did you come to computing education?

    So I was a tech professional in the finance sector, and I was made redundant when the 2008 recession hit. I did a couple of consulting jobs, but I thought to myself, “I love tech, but in five years from now, do I really want to be going from job to job? There must be something else I can do.”

    At that time there was a huge drive to recruit more teachers to teach what was called ICT back then and is now Computing. As a result, I started my career as a teacher in 2010. As a former software consultant, I had useful skills for teaching ICT. When Computing was introduced instead, I was fortunate to be at a school that could bring in external CPD (continued professional development) providers to teach us about programming and build our understanding and skills to deliver the new curriculum. I also did a lot of self-study and spoke to lots of teachers at other schools about how to teach the subject.

    What barriers or support did you encounter in your teaching career? Did you have role models when you went into teaching?

    Not really — I had to seek them out. In my environment, there are very few Black teachers, and I was often the only Black Computer Science teacher. A parent once said to me, “I hope you’re not planning to leave, because my son needs a role model in Computer Science.” And I understood exactly what she meant by that, but I’m not even a role model, I’m just someone who’s contributing to society the best way I can. I just want to pave the way for the next generation, including my children.

    My current school is supporting me to lead all the STEM engagement for students, and in that role, some of the things I do are running a STEM club that focuses a lot on computing, and running new programmes to encourage girls into tech roles. I’ve also become a CAS Master Teacher and been part of a careers panel at Queen Mary University London about the tech sector, for hundreds of school students from across London. And I was selected by the National Centre for Computing Education as one of their facilitators in the Computer Science Accelerator CPD programme.

    But there’s been a lack of leadership opportunities for me in schools. I’ve applied for middle-leadership roles and have been told my face doesn’t fit in an interview in a previous school. And I’m just as skilled and experienced as other candidates: I’ve been acting Head of Department, acting Head of Year — what more do I need to do? But I’ve not had access to middle-leadership roles. I’ve been told I’m an average teacher, but then I’ve been put onto dealing with “difficult” students if they’re Black, because a few of my previous schools have told me that I was “good at dealing with behaviour”. So that tells you about the role I was pigeonholed into.

    It is very important for Black students to have role models, and to have a curriculum that reflects them.

    Joe Arday

    I’ve never worked for a Black Headteacher, and the proportion of Black teachers in senior leadership positions is very low, only 1%. So I am considering moving into a different area of computing education, such as edtech or academia, because in schools I don’t have the opportunities to progress because of my ethnicity.

    Do you think this lack of leadership opportunities is an experience other Black teachers share?

    I think it is, that’s why the number of Black teachers is so low. And as a Black student of Computer Science considering a teaching role, I would look around my school and think, if I go into teaching, where are the opportunities going to come from?

    Black students are underrepresented in computing. Could you share your thoughts about why that’s the case?

    There’s a lack of role models across the board: in schools, but also in tech leadership roles, CEOs and company directors. And the interest of Black students isn’t fostered early on, in Year 8, Year 9 (ages 12–14). If they don’t have a teacher who is able to take them to career fairs or to tech companies, they’re not going to get exposure, they’re not going to think, “Oh, I can see myself doing that.” So unless they have a lot of interest already, they’re not going to pick Computer Science when it comes to choosing their GCSEs, because it doesn’t look like it’s for them.

    But we need diverse people in computing and STEM, especially girls. As the father of a boy and a girl of mixed heritage, that’s very important to me. Some schools I’ve worked in, they pushed computer science into the background, and it’s such a shame. They don’t have the money or the time for their teachers to do the CPD to teach it properly. And if attitudes at the top are negative, that’s going to filter down. But even if students don’t go into the tech industry, they still need digital skills to go into any number of sectors. Every young person needs them.

    It is very important for Black students to have role models, and to have a curriculum that reflects them. Students need to see themselves in their lessons and not feel ignored by what is being taught. I was very fortunate to be selected for the working group for the Raspberry Pi Foundation’s culturally relevant teaching guidelines, and I’m currently running some CPD for teachers around this. I bet in the future Ofsted will look at how diverse the curriculum of schools is.

    What do you think tech organisations can do in order to engage more Black students in computing?

    I think tech organisations need to work with schools and offer work experience placements. When I was a student, 20 years ago, I went on a placement, and that set me on the right path. Nowadays, many students don’t do work experience, they are school leavers before they do an internship. So why do so many schools and organisations not help 14- or 15-year-olds spend a week or two doing a placement and learning some real-life skills?

    A mentor explains Scratch code using a projector in a coding club session.

    And I think it’s very important for teachers to be able to keep up to date with the latest technologies so they can support their students with what they need to know when they start their own careers, and can be convincing doing it. I encourage my GCSE Computer Science students to learn about things like cloud computing and cybersecurity, about the newest types of technologies that are being used in the tech sector now. That way they’re preparing themselves. And if I was a Headteacher, I would help my students gain professional certifications that they can use when they apply for jobs.

    What is a key thing that people in computing education can do to engage more Black students?

    Teachers could run a STEM or computing club with a Black History Month theme to get Black students interested — and it doesn’t have to stop at Black History Month. And you can make computing cross-curricular, so there could be a project with all teachers, where each one runs a lesson that involves a bit of coding, so that all students can see that computing really is for everyone.

    What would you say to teachers to encourage them to take up Computer Science as a subject?

    Because of my role working for the NCCE, I always encourage teachers to join the NCCE’s Computer Science Accelerator programme and to retrain to teach Computer Science. It’s a beautiful subject, all you need to do is give it a chance.

    Thank you, Joe, for sharing your thoughts with us!

    Joe was part of the group of teachers we worked with to create our practical guide on culturally relevant teaching in the computing classroom. You can download it as a free PDF now to help you think about how to reflect all your students in your lessons.

    Website: LINK

  • Engaging Black students in computing at school — interview with Lynda Chinaka

    Engaging Black students in computing at school — interview with Lynda Chinaka

    Reading Time: 10 minutes
    Lynda Chinaka.

    On the occasion of Black History Month UK, we speak to Lynda Chinaka, Senior Lecturer in Computing in Education at the University of Roehampton, about her experiences in computing education, her thoughts about underrepresentation of Black students in the subject, and her ideas about what needs to be done to engage more Black students.

    Lynda, to start us off, can you share your thoughts about Black History Month?

    Black history is a really important topic, obviously, and I think that, when Black History Month was first introduced, it was very powerful — and it continues to be in certain places. But I think that, for where we are as a society, it’s time to move past talking about Black history for only one month of the year, albeit an important, focused celebration. And certainly that would include integrating Black history and Black figures across subjects in school. That would be a very useful way to celebrate the contributions that Black people have made, and continue to make, to society. Children need to be taught a history in which they are included and valued. Good history is always a matter of different perspectives. Too often in schools, children experience a single perspective.  

    Please tell me a bit about your own history: how did you come to computing education as a field? What were the support or barriers you encountered?

    In terms of my journey, I’ve always been passionate about Computing — formerly ICT. I’ve been a Computing subject lead in schools, moving on into senior management. Beyond my career in schools, I have worked as an ICT consultant and as a Teacher Leader for a London authority. During that time, my interest in Computing/ICT led me to undertake an MA in Computing in Education at King’s College London. This led me to become a teacher trainer in my current role. In some sense, I’m carrying on the work I did with the local authorities, but in a university setting. At the University of Roehampton, I teach computing to BA Primary Education and PGCE students. Training teachers is something that I’m very much interested in. It’s about engaging student teachers, supporting them in developing their understanding of Computing in the primary phases. Students learn about the principles of computing, related learning theories, and how children think and learn. Perhaps more importantly, I am keen to instil a love of the subject and broaden their notions about computing.

    A teacher attending Picademy laughs as she works through an activity

    In terms of the support I’ve received, I’ve worked in certain schools where Computing was really valued by the Headteacher, which enabled me to promote my vision for the subject. Supportive colleagues made a difference in their willingness take on new initiatives that I presented. I have been fortunate to work in local authorities that have been forward-thinking; one school became a test bed for Computing. So in that sense, schools have supported me. But as a Black person, a Black woman in particular, I would say that I faced barriers throughout my career. And those barriers have been there since childhood. In the Black community, people experience all sorts of things, and prejudice and barriers have been at play in my career.

    Prejudice sometimes is very overt. An example I think I can share because it prevented me from getting a job: I went for an interview in a school. It was a very good interview, the Headteacher told me, “It was fantastic, you’re amazing, you’re excellent,” the problem was that there weren’t “enough Black pupils”, so she “didn’t see the need…”. And this is a discussion that was shared with me. Now in 2021 a Headteacher wouldn’t say that, but let’s just wind the clock back 15 years. These are the kinds of experiences that you go through as a Black teacher.

    So what happens is, you tend to build up a certain resilience. People’s perceptions and low expectations of me have been a hindrance. This can be debilitating. You get tired of having to go through the same thing, of having to overcome negativity. Yes, I would say this has limited my progress. Obviously, I am speaking about my particular experiences as a Black woman, but I would say that these experiences are shared by many people like me.

    An educator teaches students to create with technology.

    But it’s my determination and the investment I’ve made that has resulted in me staying in the field. And a source of support for me is always Black colleagues, they understand the issues that are inherent within the profession. 

    Black students are underrepresented in Computing as a subject. Drawing on your own work and experiences, could you share your thoughts about why that’s the case?

    There need to be more Black teachers, because children need to see themselves represented in schools. As a Black teacher, I know that I have made a difference to Black children in my class who had a Black role model in front of them. When we talk about the poor performance of Black pupils, we need to be careful not to blame them for the failures of the education system. Policy makers, Headteachers, teachers, and practitioners need to be a lot more self-aware and examine the impact of racism in education. People need to examine their own policies and practice, especially people in positions of power.

    A lot of collective work needs to be done.

    Lynda Chinaka

    Some local authorities do better than others, and some Headteachers I’ve worked with have been keen to build a diverse staff team. Black people are not well-represented at all in education. Headteachers need to be more proactive about their staff teams and recruitment. And they need to encourage Black teachers to go for jobs in senior management.

    An educator helps a young person with a computing problem.

    In all settings I taught in, no matter how many students of colour there were, these students would experience something in my classroom that their white counterparts had experienced all their lives: they would leave their home and come to school and be taught by someone who looks like them and perhaps speaks the same language as them. It’s enormously affirming for children to have that experience. And it’s important for all children actually, white children as well. Seeing a Black person teaching in the classroom, in a position of power or influence — it changes their mindset, and that ultimately changes perspectives.

    So in terms of that route into Computing, Black students need to see themselves represented.

    Why do you think it’s important to teach young people about Computing?

    It’s absolutely vital to teach children about Computing. As adults, they are going to participate in a future that we know very little about, so I think it’s important that they’re taught computer science approaches, problem solving and computational thinking. So children need to be taught to be creators and not simply passive users of technology.

    A Coolest Projects participant

    One of the things some of my university students say is, “Oh my goodness, I can’t teach Computing, all the children know much more than me.”, but actually, that’s a little bit of a myth, I think. Children are better at using technologies than solving computing problems. They need to learn a range of computational approaches for solving problems. Computing is a life skill; it is the future. We saw during the pandemic the effects of digital inequity on pupils.

    What do you think needs to change in computing education, the tech sector, or elsewhere in order to engage more Black students in Computing?

    In education, we need to look at the curriculum and how to decolonise it to really engage young people. This also includes looking out for bias and prejudice in the things that are taught. Even when you’re thinking about specific computer science topics. So for example, the traditional example for algorithm design is making a cup of tea. But tea is a universal drink, it originates in China, and as a result of colonialism made its way to India and Kenya. So we drink tea universally, but the method (algorithm) for making tea doesn’t necessarily always include a china tea pot or a tea bag. There are lots of ways to introduce it, thinking about how it’s prepared in different cultures, say Kenya or the Punjab, and using that as a basis for developing children’s algorithmic thinking. This is culturally relevant. It’s about bringing the interests and experiences children have into the classroom.

    Young women in a computing lesson.

    For children to be engaged in Computing, there needs to be a payoff for them. For example, I’ve seen young people developing their own African emojis. They need to see a point to it! They don’t necessarily have to become computer scientists or software engineers, but Computing should be an avenue that opens for them because they can see it as something to further their own aims, their own causes. Young people are very socially and politically aware. For example, Black communities are very aware of the way that climate change affects the Global South and could use data science to highlight this. Many will have extended family living in these regions that are affected now.

    So you don’t compromise on the quality of your teaching, and it require teachers to be more reflective. There is no quick fix. For example, you can’t just insert African masks into a lesson without exploring their meaning in real depth within the culture they originate from.

    So in your Computing or Computer Science lessons, you need to include topics young people are interested in: climate change, discrimination, algorithms and algorithmic bias in software, surveillance and facial recognition. Social justice topics are close to their hearts. You can get them interested in AI and data science by talking about the off-the-shelf datasets that Big Tech uses, and about what impact these have in terms of surveillance and on minority communities specifically. 

    Can you talk a bit about the different terms used to describe this kind of approach to education, ‘culturally relevant teaching’ and ‘decolonising the curriculum’?

    ‘Culturally relevant’ is easier to sit with. ‘Decolonising the curriculum’ provokes a reaction, but it’s really about teaching children about histories and perspectives on curricula that affect us all. We need to move towards a curriculum that is fit for purpose where children are taught different perspectives and truth that they recognise. Even if you’re in a school without any Black children at all, the curriculum still needs to be decolonised so that children can actually understand and benefit from the many ways that topics, events, subjects may be taught.

    A woman teacher helps a young person with a coding project.

    When we think about learning in terms of being culturally relevant and responsive, this is about harnessing children’s heritage, experiences, and viewpoints to engage learners such that the curriculum is meaningful and includes them. The goal here is to promote long-term and consistent engagement with Computing.

    What is being missed by current initiatives to increase diversity and Black students’ engagement?

    Diversity initiatives are a good step, but we need to give it time. 

    The selection process for subjects at GCSE can sometimes affect the uptake of computing. Then there are individual attitudes and experiences of pupils. It has been documented that Black and Asian students have often been in the minority and experience marginalisation, particularly noted in the case of female students in GCSE Computer Science.

    ITE (Initial Teacher Education) providers need to consider their partnerships with schools and support schools to be more inclusive. We need more Black teachers, as I said. We also need to democratise pathways for young people getting into computing and STEM careers. Applying to university is one way — there should be others.

    Schools could also develop partnerships with organisations that have their roots in the Black community. Research has also highlighted discriminatory practices in careers advice, and in the application and interview processes of Russell Group universities. These need to be addressed.

    A students in a computer science lecture.

    There are too few Black academics at universities. This can have an impact on student choice and decisions about whether to attend an institution or not. Institutions may seem unwelcoming or unsympathetic. Higher education institutions need to eliminate bias through feedback and measuring course take-up. 

    Outside the field of education, tech companies could offer summer schemes, short programmes to stimulate interest amongst young Black people. Really, the people in leadership positions, all the people with the power, need to be proactive.

    A lot of collective work needs to be done. It’s a whole pipeline, and everybody needs to play a part.

    What in your mind is a key thing right now that people in computing education who want to engage more Black students should do?

    You can present children with Black pioneers in computing and tech. They can show Black children how to achieve their goals in life through computing. For example, create podcasts or make lists with various organisations that use data science to further specific causes.

    It’s not a one-off, one teacher thing, it’s a project for the whole school.

    Lynda Chinaka

    Also, it’s not a one-off, one teacher thing, it’s project for the whole school. You need to build it into a whole curriculum map, do all the things you do to build a new curriculum map: get every teacher to contribute, so they take it on, own it, research it, make those links to the national curriculum so it’s relevant. Looking at it in isolation it’s a problem, but it’s a whole school approach that starts as a working group. And it’s senior management that sets the tone, and they really need to be proactive, but you can start by starting a working group. It won’t be implemented overnight. A bit like introducing a school uniform. Do it slowly, have a pilot year group. Get parents in, have a coffee evening, get school governors on board. It’s a whole staff team effort.

    People need to recognise the size of the problem and not be discouraged by the fact that things haven’t happened overnight. But people who are in a position of influence need to start by having those conversations, because that’s the only way that change can happen, quite frankly.

    Lynda, thank you for sharing your insights with us!

    Lynda was one of the advisors in the group we worked with to create our recently published, practical guide on culturally relevant teaching. You can download it as a free PDF now. We hope it will help you kickstart conversations in your setting.

    Website: LINK

  • How can we design inclusive and accessible curricula for computer science?

    How can we design inclusive and accessible curricula for computer science?

    Reading Time: 7 minutes

    After a brief hiatus over the Easter period, we are excited to be back with our series of online research seminars focused on diversity and inclusion, where in partnership with the Royal Academy of Engineering, we host researchers from the UK and USA. By diversity, we mean any dimension that can be used to differentiate groups and people from one another. This might be, for example, age, gender, socio-economic status, disability, ethnicity, religion, nationality, or sexuality. The aim of inclusion is to embrace all people irrespective of difference.

    Maya Israel

    This month we welcomed Dr Maya Israel, who heads the Creative Technology Research Lab at the University of Florida. She spoke to us about designing inclusive learning experiences in computer science (CS) that cater for learners with a wide range of educational needs.

    Underrepresentation of computer science students with additional needs

    Maya introduced her work by explaining that the primary goal of her research is to “increase access to CS education for students with disabilities and others at risk for academic failure”. To illustrate this, she shared some preliminary findings (paper in preparation) from the analysis of data from one US school district.

    A computing classroom filled with learners.
    By designing activities that support students with additional educational needs, we can improve the understanding and proficiency of all of our students.

    Her results showed that only around 22–25% of elementary school students with additional needs (including students with learning disabilities, speech or language impairments, emotional disturbances, or learners on the autistic spectrum) accessed CS classes. Even more worryingly, by high school only 5–7% of students with additional needs accessed CS classes (for students on the autistic spectrum the decline in access was less steep, to around 12%).

    Maya made the important point that many educators and school leaders may ascribe this lack of representation to students’ disabilities being a barrier to success, rather than to the design of curricula and instruction methods being a barrier to these students accessing and succeeding in CS education.

    What barriers to inclusion are there for students with additional needs?

    Maya detailed the systems approach she uses in her work to think about external barriers to inclusion in CS education:

    • At the classroom level — such as teachers’ understanding of learner variability and instructional approaches
    • At the school level — perhaps CS classes clash with additional classes that the learner requires for extra support with other subjects
    • At the systemic level — whether the tools and curricula in use are accessible

    As an example, Maya pointed out that many of the programming platforms used in CS education are not fully accessible to all learners; each platform has unique accessibility issues.

    A venn diagram illustrating that the work to increase access to CS education for students with disabilities and others at risk for academic failure cannot occur if we do not examine barriers to inclusion in a systematic way. The venn diagram consists of four fully overlapping circles. The outermost is represents systemic barriers. The next one represents school-level barriers. The third one represents classroom barriers. The innermost one represents the resulting limited inclusion.

    This is not to say that students with additional needs have no internal barriers to succeeding in CS (these may include difficulties with understanding code, debugging, planning, and dealing with frustration). Maya told us about a study in which the researchers used the Collaborative Computing Observation Instrument (C-COI), which allows analysis of video footage recorded during collaborative programming exercises to identify student challenges and strategies. The study found various strategies for debugging and highlighted a particular need for supporting students in transitioning from a trial-and-error approach to more systematic testing. The C-COI has a lot of potential for understanding student-level barriers to learning, and it will also be able to give insight into the external barriers to inclusion.

    Pathways to inclusion

    Maya’s work has focused not only on identifying the problems with access, it also aims to develop solutions, which she terms pathways to inclusion. A standard approach to inclusion might involve designing curricula for the ‘average’ learner and then differentiating work for learners with additional needs. What is new and exciting about Maya’s approach is that it is based on the premise that there is no such person as an average learner, and rather that all learners have jagged profiles of strengths and weaknesses that contribute to their level of academic success.

    In the seminar, Maya described ways in which CS curricula can be designed to be flexible and take into account the variability of all learners. To do this, she has been using the Universal Design for Learning (UDL) approach, adapting it specifically for CS and testing it in the classroom.

    The three core concepts of Universal Design for Learning according to Maya Israel. 1, barriers exists in the learning environment. 2, variability is the norm, meaning learners have jagged learning profiles. 3, the goal is expert learning.

    Why is Universal Design for Learning useful?

    The UDL approach helps educators anticipate barriers to learning and plan activities to overcome them by focusing on providing different means of engagement, representation, and expression for learners in each lesson. Different types of activities are suggested to address each of these three areas. Maya and her team have adapted the general principles of UDL to a CS-specific context, providing teachers with clear checkpoints to consider when designing computing lessons; you can read more on this in this recent Hello World article.

    Two young children code in Scratch on a laptop.

    A practical UDL example Maya shared with us was using a series of scaffolded Scratch projects based on the ‘Use-Modify-Create’ approach. Students begin by playing and remixing code; then they try to debug the same program when it is not working; then they reconstruct code that has been deconstructed for the same program; and then finally, they try to expand the program to make the Scratch sprite do something of their choosing. All four Scratch project versions are available at the same time, so students can toggle between them as they learn. This helps them work more independently by reducing cognitive load and providing a range of scaffolded support.

    This example illustrates that, by designing activities that support students with additional educational needs, we can improve the understanding and proficiency of all of our students.

    Training teachers to support CS students with additional needs

    Maya identified three groups of teachers who can benefit from training in either UDL or in supporting students with additional needs in CS:

    1. Special Education teachers who have knowledge of instructional strategies for students with additional needs but little experience/subject knowledge of computing
    2. Computing teachers who have subject knowledge but little experience of Special Education strategies
    3. Teachers who are new to computing and have little experience of Special Education

    Maya and her team conducted research with all three of these teacher groups, where they provided professional development for the teachers with the aim to understand what elements of the training were most useful and important for teachers’ confidence and practice in supporting students with additional needs in CS. In this research project, they found that for the teachers, a key aspect of the training was having time to identify and discuss the barriers/challenges their students face, as well as potential strategies to overcome these. This process is a core element of the UDL approach, and may be very different to the standard method of planning lessons that teachers are used to.

    A teacher attending Picademy teacher training laughs as she works through an activity.
    Having time to identify and discuss the barriers/challenges students face, as well as potential strategies to overcome these, is key for teachers to design accessible curricula.

    Another study by Maya’s team showed that an understanding of UDL in the context of CS was a key predictor of teacher confidence in teaching CS to students with additional needs (along with the number years spent teaching CS, and general confidence in teaching CS). Maya therefore believes that focusing on teachers’ understanding of the UDL approach and how they can apply it in CS will be the most important part of their future professional development training.

    Final thoughts

    Maya talked to us about the importance of intersectionality in supporting students who are learning CS, which aligns with a previous seminar given by Jakita O. Thomas. Specifically, Maya identified that UDL should fit into a wider approach of Intersectional Inclusive Computer Science Education, which encompasses UDL, culturally relevant and sustaining pedagogy, and translanguaging pedagogy/multilingual education. We hope to learn more about this topic area in upcoming seminars in our current series.

    Four key takeaways from Maya Israel's research seminar: 1, include students with disabilities in K-12 CS education. They will succeed when given accessible, engaging activities. 2, consider goals, anticipated barriers, and the UDL principles when designing instructions for all learners. 3, disaggregate your data to see who is meeting instructional goals and who is not. 4, share successes of students with disabilities in CS education so we can start shifting the discourse to better inclusion.

    You can download Maya’s presentation slides now, and we’ll share the video recording of her seminar on the same page soon.

    Attend the next online research seminar

    The next seminar in the diversity and inclusion series will take place on Tuesday 4 May at 17:00–18:30 BST / 12:00–13:30 EDT / 9:00–10:30 PDT / 18:00–19:30 CEST. You’ll hear from Dr Cecily Morrison (Microsoft Research) about her research into computing for learners with visual impairments.

    To join this free event, click below and sign up with your name and email address:

    We’ll send you the link and instructions. See you there!

    This was our 15th research seminar — you can find all the related blog posts here.

    Website: LINK

  • Engaging Black girls in STEM learning through game design

    Engaging Black girls in STEM learning through game design

    Reading Time: 6 minutes

    Today is International Women’s Day, giving us the perfect opportunity to highlight a research project focusing on Black girls learning computing.

    Two black girls sitting against an outside wall while working on a laptop

    Between January and July 2021, we’re partnering with the Royal Academy of Engineering to host speakers from the UK and USA to give a series of research seminars focused on diversity and inclusion. By diversity, we mean any dimension that can be used to differentiate groups and people from one another. This might be, for example, age, gender, socio-economic status, disability, ethnicity, religion, nationality, or sexuality. The aim of inclusion is to embrace all people irrespective of difference. In this blog post, I discuss the third research seminar in this series.

    Dr Jakita O. Thomas
    Dr Jakita O. Thomas

    This month we were delighted to hear from Dr Jakita O. Thomas from Auburn University and BlackComputHer, who talked to us about a seven-year qualitative study she conducted with a group of Black girls learning game design. Jakita is an Associate Professor of Computer Science and Software Engineering at Auburn University in Alabama, and Director of the CUlturally and SOcially Relevant (CURSOR) Computing Lab.

    The SCAT programme

    The Supporting Computational Algorithmic Thinking (SCAT) programme started in 2013 and was originally funded for three years. It was a free enrichment programme exploring how Black middle-school girls develop computational algorithmic thinking skills over time in the context of game design. After three years the funding was extended, giving Jakita and her colleagues the opportunity to continue the intervention with the same group of girls from middle school through to high school graduation (7 years in total). 23 students were recruited onto the programme and retention was extremely high.

    Dr Jakita Thomas presents a slide: "Problem context: Black women and girls are rarely construed as producers of computer science knowledge in US schools and society. Design, learning, identity and teaching are inextricably linked and should come together and promoto robust experiences for participation in a global world. Black girls in STEM+C environments are rarely served in such ways. Some scholars suggest that STEM is simply a neoliberal project. When we put that view in conversation with Black girls in and informal learning environment design to promote Black female excellence, a more nuanced and complex perspective emerges."
    Click to enlarge

    The SCAT programme ran throughout each academic year and also involved a summer camp element. The programme included three types of activities: the two-week summer camp, twelve monthly workshops, and field trips, all focused on game design. The instructors on the programme were all Black women, either with or working towards doctorates in computer science, serving as role models to the girls.

    The theoretical basis of the programme drew on a combination of:

    • Cognitive apprenticeship, i.e. learning from others with expertise in a particular field
    • Black Feminist Thought (based on the work of Patricia Hill Collins) as a foundation for valuing Black girls’ knowledge and lived experience as expertise they bring to their learning environment
    • Intersectionality, i.e. considering the intersection of multiple characteristics, e.g. race and gender

    This context highlights that interventions to increase diversity in STEM or computing tend to support mainly white girls or Black and other ethnic minority boys, marginalising Black girls.

    Why game design?

    Game design was selected as a topic because it is popular with all young people as consumers. According to research Jakita drew on, over 94% of girls in the US aged 12 to 17 play video games, with little differences relating to race or socioeconomic status. However, game design is an industry in which African American women are under-represented. Women represent only 10 to 12% of the game design workforce, and less than 5% of the workforce are African American or Latino people of any gender. Therefore Jakita and her colleagues saw it as an ideal domain to work in with the girls.

    Dr Jakita Thomas presents a slide: Game design cycle: brainstorming, storyboarding, physical prototyping, design document, software prototyping, implementation, quality assurance / maintenance"
    Click to enlarge

    Another reason for selecting game design as a topic was that it gave the students (the programme calls them scholars) the opportunity to design and create their own artefacts. This allowed the participants to select topics for games that really mattered to them, which Jakita suggested might be related to their own identity, and issues of equity and social justice. This aligns completely with the thoughts expressed by the speakers at our February seminar.

    What was learned through SCAT?

    Jakita explained that her findings suggest that the ways in which the SCAT programme was intentionally designed to offer Black girls opportunities to radically shape their identities as producers, innovators and disruptors of deficit perspectives. Deficit perspectives are ones that include implicit assumptions that privilege the values, beliefs, and practices of one group over another. Deficit thinking was a theme in our February seminar with Prof Tia Madkins, Dr Nicol R Howard, and Shomari Jones, and it was interesting to hear more about this. 

    Data sources of the project included analysis of online journal data and end of season questionnaires across the first three years of SCAT, which provided insights into the participants’ perceptions and feelings about their SCAT experience, their understanding of computational algorithmic thinking, their perceptions of themselves as game designers, and the application of concepts learned within SCAT to other areas of their lives outside of SCAT.

    In the first three years of the programme, the number of participants who saw game design as a viable hobby went from 0% to 23% to 45%. Other analysis Jakita and her colleagues performed was qualitative and identified as one theme that the participants wanted to ‘find meaning and relevance in altruism’. The researchers found that the participants started to reflect on their own narrative and identity through the programme. One girl on the programme said:

    “At the beginning of SCAT, I didn’t understand why I was there. Then I thought about what I was doing. I was an African American girl learning how to properly learn game design. As I grew over the years in game designing, I gained a strong liking. The SCAT program has gifted me with a new hobby that most women don’t have, and for that I am grateful.”

    – SCAT scholar (participant)

    Jakita explained that the girls on the programme had formed a sisterhood, in that they came to know each other well and formed a strong and supportive community. In addition, what I found remarkable was the long-term impact of this programme: 22 out of the 23 young women that took part in the programme are now enrolled on STEM degree courses.

    Dr Jakita Thomas presents a slide: "Conclusions and points of discussion: STEM learning for whom and to what ends is a complex narrative when centering Black girls because of the intersectional politics of their histories and STEM education opportunities. SCAT serves as a counter-space for STEM learning. Black girls should be positioned as producers of knowledge in STEM. Black girls need to have not only opportunities to acquire and develop STEM skills, capabilities and practices, but they also need time to reflect on those opportunities and experiences and assess whether and how STEM connects to their own interests, goals and aspirations (at least 12 months). It is imperative that learning scientists think from an intersectional perspective when considering how to design STEM learning environments for Black girls."
    Jakita’s final slide, stimulating a great Q&A session (click to enlarge)

    What next?

    Read the paper on which Jakita’s seminar was based, download the presentation slides, and watch the video recording:

    [youtube https://www.youtube.com/watch?v=WvjeDB5mAvo?feature=oembed&w=500&h=281]

    This research intervention obviously represents a very small sample, as is often the case with rich, qualitative studies, but there is much we can learn from it, and still much more to be done. In the UK, we do not have any ongoing or previously published research studies that look at intersectionality and computing education, and conducting similar research would be valuable. Jakita and her colleagues worked in the non-formal space, providing opportunities outside the formal curriculum, but throughout the academic year. We need to understand better the affordances of non-formal and formal learning for supporting engagement of learners from underrepresented groups in computing, perhaps particularly in England, where a mandatory computing curriculum from age 5 has been in place since 2014.

    Next up in our free series

    This was our 14th research seminar! You can find all the related blog posts on this page.

    Next we’ve got three online events coming up in quick succession! In our seminar on Tuesday 20 April at 17:00–18:30 BST / 12:00–13:30 EDT / 9:00–10:30 PDT / 18:00–19:30 CEST, we’ll welcome Maya Israel from the University of Florida, who will be talking about Universal Design for Learning and computing. On Monday 26 April, we will be hosting a panel discussion on gender balance in computing. And at the seminar on Tuesday 2 May, we will be hearing from Dr Cecily Morrison (Microsoft Research) about computing and learners with visual disabilities.

    To join any of these free events, click below and sign up with your name and email address:

    We’ll send you the link and instructions. See you there!

    Website: LINK

  • Universal design for learning in computing | Hello World #15

    Universal design for learning in computing | Hello World #15

    Reading Time: 7 minutes

    In our brand-new issue of Hello World magazine, Hayley Leonard from our team gives a primer on how computing educators can apply the Universal Design for Learning framework in their lessons.

    Cover of issue 15 of Hello World magazine

    Universal Design for Learning (UDL) is a framework for considering how tools and resources can be used to reduce barriers and support all learners. Based on findings from neuroscience, it has been developed over the last 30 years by the Center for Applied Special Technology (CAST), a nonprofit education research and development organisation based in the US. UDL is currently used across the globe, with research showing it can be an efficient approach for designing flexible learning environments and accessible content.

    A computing classroom populated by students with diverse genders and ethnicities

    Engaging a wider range of learners is an important issue in computer science, which is often not chosen as an optional subject by girls and those from some minority ethnic groups. Researchers at the Creative Technology Research Lab in the US have been investigating how UDL principles can be applied to computer science, to improve learning and engagement for all students. They have adapted the UDL guidelines to a computer science education context and begun to explore how teachers use the framework in their own practice. The hope is that understanding and adapting how the subject is taught could help to increase the representation of all groups in computing.

    The UDL guidelines help educators anticipate barriers to learning and plan activities to overcome them.

    A scientific approach

    The UDL framework is based on neuroscientific evidence which highlights how different areas or networks in the brain work together to process information during learning. Importantly, there is variation across individuals in how each of these networks functions and how they interact with each other. This means that a traditional approach to teaching, in which a main task is differentiated for certain students with special educational needs, may miss out on the variation in learning between all students across different tasks.

    A stylised representation of the human brain
    The UDL framework is based on neuroscientific evidence

    The UDL guidelines highlight different opportunities to take learner differences into account when planning lessons. The framework is structured according to three main principles, which are directly related to three networks in the brain that play a central role in learning. It encourages educators to plan multiple, flexible methods of engagement in learning (affective networks), representation of the teaching materials (recognition networks), and opportunities for action and expression of what has been learnt (strategic networks).

    The three principles of UDL are each expanded into guidelines and checkpoints that allow educators to identify the different methods of engagement, representation, and expression to be used in a particular lesson. Each principle is also broken down into activities that allow learners to access the learning goals, remain engaged and build on their learning, and begin to internalise the approaches to learning so that they are empowered for the future.

    Examples of UDL guidelines for computer science education from the Creative Technology Research Lab

    Multiple means of engagement Multiple means of representation Multiple means of
    action and expression
    Provide options for recruiting interests
    * Give students choice (software, project, topic)
    * Allow students to make projects relevant to culture and age
    Provide options for perception
    * Model computing through physical representations as well as through interactive whiteboard/videos etc.
    * Select coding apps and websites that allow adjustment of visual settings (e.g. font size/contrast) and that are compatible with screen readers
    Provide options for physical action
    * Include CS unplugged activities that show physical relationships of abstract computing concepts
    * Use assistive technology, including a larger or smaller mouse or touchscreen devices
    Provide options for sustaining effort and persistence
    * Utilise pair programming and group work with clearly defined roles
    * Discuss the integral role of perseverance and problem-solving in computer science
    Provide options for language, mathematical expressions, and symbols
    * Teach and review computing vocabulary (e.g. code, animations, algorithms)
    * Provide reference sheets with images of blocks, or with common syntax when using text
    Provide options for expression and communication
    * Provide sentence starters or checklists for communicating in order to collaborate, give feedback, and explain work
    * Provide options that include starter code
    Provide options for self-regulation
    * Break up coding activities with opportunities for reflection, such as ‘turn and talk’ or written questions
    * Model different strategies for dealing with frustration appropriately
    Provide options for comprehension
    * Encourage students to ask questions as comprehension checkpoints
    * Use relevant analogies and make cross-curricular connections explicit
    Provide options for executive function
    * Embed prompts to stop and plan, test, or debug throughout a lesson or project
    * Demonstrate debugging with think-alouds

    Each principle of the UDL framework is associated with three areas of activity which may be considered when planning lessons or units of work. It will not be the case that each area of activity should be covered in every lesson, and some may prove more important in particular contexts than others. The full table and explanation can be found on the Creative Technology Research Lab website at ctrl.education.ufl.edu/projects/tactic.

    Applying UDL to computer science education

    While an advantage of UDL is that the principles can be applied across different subjects, it is important to think carefully about what activities to address these principles could look like in the case of computer science.

    Maya Israel
    Researcher Maya Israel will speak at our April seminar

    Researchers at the Creative Technology Research Lab, led by Maya Israel, have identified key activities, some of which are presented in the table on the previous page. These guidelines will help educators anticipate potential barriers to learning and plan activities that can overcome them, or adapt activities from those in existing schemes of work, to help engage the widest possible range of students in the lesson.

    UDL in the classroom

    As well as suggesting approaches to applying UDL to computer science education, the research team at the Creative Technology Research Lab has also investigated how teachers are using UDL in practice. Israel and colleagues worked with four novice computer science teachers in US elementary schools to train them in the use of UDL and understand how they applied the framework in their teaching.

    Smiling learners in a computing classroom

    The research found that the teachers were most likely to include in their teaching multiple means of engagement, followed by multiple methods of representation. For example, they all offered choice in their students’ activities and provided materials in different formats (such as oral and visual presentations and demonstrations). They were less likely to provide multiple means of action and expression, and mainly addressed this principle through supporting students in planning work and checking their progress against their goals.

    Although the study included only four teachers, it highlighted the flexibility of the UDL approach in catering for different needs within variable teaching contexts. More research will be needed in future, with larger samples, to understand how successful the approach is in helping a wide range of students to achieve good learning outcomes.

    Find out more about using UDL

    There are numerous resources designed to help teachers learn more about the UDL framework and how to apply it to teaching computing. The CAST website (helloworld.cc/cast) includes an explainer video and the detailed UDL guidelines. The Creative Technology Research Lab website has computing-specific ideas and lesson plans using UDL (helloworld.cc/udl).

    Maya Israel will be presenting her research at our computing education research seminar series, on 20 April 2021. Our seminars are free to attend and open to anyone from anywhere around the world. Find out more about the current seminar series, which focuses on diversity and inclusion in computing education.

    Further reading on UDL

    Subscribe to Hello World for free

    In issue 15 of Hello World, we hear from five teachers who have made the switch to computing from another subject. They tell us about the challenges they have faced, as well as the joys of teaching young people how to create new things with technology. All this and much, much more in the new issue!

    Educators based in the UK can subscribe to receive print copies for free!

    Website: LINK